Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2024.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2024.04.14.589423

RESUMO

The recent coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favouring the development of severe pneumonia. In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2), as well as determined the pro-inflammatory and antiviral responses of the distal lung tissue. Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a sub optimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to infection with both viruses by an induction of IL-6 and IP-10/CXCL10 mRNAs, being highest for H5N1. Finally, while SARS-CoV-2 infection was not causing detectable cell death, IAV infection caused significant cytotoxicity and induced significant early interferon responses. In summary, our findings suggest that aged lung tissue might not favour viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.


Assuntos
Pneumonia , Síndrome Respiratória Aguda Grave , Infecções Respiratórias , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , COVID-19 , Influenza Humana
2.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.04.28.489537

RESUMO

Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naive hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naive K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA